Algebras of the $\operatorname{SU}(\mathrm{n})$ invariants: structure, representations and applications

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25393
(http://iopscience.iop.org/0305-4470/25/2/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:21

Please note that terms and conditions apply.

# Algebras of the $\mathbf{S U}(\boldsymbol{n})$ invariants: structure, representations and applications 

V P Karassiov<br>Optics Department, Lebedev Physics Institute (FIAN), 53 Lenin Avenue, 117924 Moscow, USSR

Received 3 May 1991


#### Abstract

A new class of Lie-algebraic structures is determined within examination of bosonic oscillator systems with internal $\mathrm{SU}(n)$ symmetries. They are generated by the $S U(n)$ vector invariants made up of bosonic operators and act complementarily to the $S U(n)$ group on the Fock spaces. A full spectral analysis of the Fock spaces is given with respect to both $\operatorname{SU}(n)$ algebras and their complementary ones. Some physical applications of the results to composite models of many-body systems are also pointed out.


For many decades the symmetry approach has been widely and successfully used in the quantum theory of many-body systems (see e.g. [1-8]). Specifically, analysis of many-body problems within the second quantization method introduces in a natural way a symmetry formalism associated with oscillators of bosonic and fermionic types [1, 4-6].

Such an approach is especially fruitful in examining composite models with an internal symmetry since it allows us to display some hidden symmetries and other peculiarities of systems under consideration [6-9].

Indeed, let us consider many-body quantum oscillator systems which are associated with the creation and annihilation operators $x_{i}^{\alpha}$ and $\bar{x}_{i}^{\alpha}=\left(x_{i}^{\alpha}\right)^{+}$, respectively ( $\alpha=$ $1,2, \ldots, n ; i=1,2, \ldots, m<\infty$, the superscript + denotes the Hermitian conjugation). Here the superscript $\alpha$ labels 'internal' components of one-particle states that transform in accordance with the vector (fundamental) irreducible representation (irrep) $D^{1}$ (G) of a group $G$ :

$$
\begin{equation*}
x_{i}^{\alpha} \xrightarrow{\mathrm{G}} u^{\alpha \beta} x_{i}^{\beta} \quad \bar{x}_{i}^{\alpha} \xrightarrow{G}\left(u^{\alpha \beta} x_{i}^{\beta}\right)^{+} \quad\left\|u^{\alpha \beta}\right\| \in D^{1}(\mathrm{G}) \tag{1}
\end{equation*}
$$

where from hereon the summation is implied over repeated Greek superscripts. The operators $x_{i}^{\alpha}, \bar{x}_{j}^{\beta}$ satisfy the standard commutation relations (CR)

$$
\begin{align*}
& {\left[x_{i}^{\alpha}, x_{j}^{\beta}\right]_{\sigma(\lambda)}=x_{i}^{\alpha} x_{j}^{\beta}+\lambda x_{j}^{\beta} x_{i}^{\alpha}=0=\left[\bar{x}_{i}^{\alpha}, \tilde{x}_{j}^{\beta}\right]_{\sigma(\lambda)}} \\
& {\left[\bar{x}_{i}^{\alpha}, x_{j}^{\beta}\right]_{\sigma(\lambda)}=\delta^{\alpha \beta} \delta_{i j} \quad \sigma(\lambda)=\operatorname{sgn} \lambda} \tag{2}
\end{align*}
$$

where $\lambda=-1$ and 1 for bosonic and fermionic systems, respectively. The Hilbert spaces for these systems are the Fock spaces $L_{\mathrm{F}}$ spanned by the basic vectors

$$
\begin{equation*}
\left|\left\{n_{i}^{\alpha}\right\}\right\rangle=N\left(\left\{n_{i}^{\alpha}\right\}\right) \prod_{\{\alpha\}}\left(x_{1}^{\alpha_{1}}\right)^{n_{1}^{\alpha_{1}}}\left(x_{2}^{\alpha_{2}}\right)^{n_{2}^{\alpha_{2}}} \ldots\left(x_{m}^{\alpha_{m}}\right)^{n_{3}^{\alpha_{3}}}|0\rangle \tag{3}
\end{equation*}
$$

where $|0\rangle$ is the vacuum vector: $\bar{x}_{i}^{\alpha}|0\rangle=0, \forall \alpha, i$ and $N$ is a normalization constant. All physical operators including a Hamiltonian $H$ are polynomials in variables $x_{i}^{\alpha}$, $\bar{x}_{j}^{\beta}$, e.g.

$$
\begin{equation*}
H=\sum_{i, j} \omega_{i j}^{\alpha \beta} x_{i}^{\alpha} \bar{x}_{j}^{\beta}+\sum_{i}\left(c_{i}^{\alpha} x_{i}^{\alpha}+c_{i}^{\alpha^{*}} \bar{x}_{i}^{\alpha}\right)+\text { higher powers } \tag{4}
\end{equation*}
$$

where the asterisk * denotes the complex conjugation.
Now we suppose that a Hamiltonian $H$ is invariant with respect to the action (1) of the 'internal' symmetry group G. Then, according to the vector invariant theory [10], $H$ depends polynomially only on some elementary G-invariants $I_{r}\left(\left\{x_{i}^{\alpha}, \bar{x}_{j}^{\beta}\right\}\right)$ made up of G-vectors $x_{i}=\left(x_{i}^{\alpha}\right)$ and $\bar{x}_{i}=\left(\bar{x}_{i}^{\alpha}\right)$. Further, this G-invariance of $H$ implies a possibility of picking out the G-invariant subspaces in $L_{\mathrm{F}}$ that one may interpret as the existence of kinematically coupled subsystems with $G$-invariant dynamics. In order to examine such composite subsystems within the general symmetry approach [3,4] we need to construct $C^{*}$-algebras [11] of the G-invariant observables $k_{m}(\mathrm{G})$ and the G-invariant dynamic symmetry algebras $k_{m}^{(\lambda)}(\mathrm{G})$ in terms of $\left\{I_{r}\left(\left\{x_{i}^{\alpha}, \bar{x}_{j}^{\beta}\right\}\right)\right\}$ as well as study representations of these algebras in the spaces $L_{\mathrm{F}}$ [9].

Efficient tools for solving these problems are the vector invariant theory [10] and the conception of complementary groups and algebras [8,12]. Specifically, the complementarity theory allows us to decompose the space $L_{F}$ into direct sum (with a simple spectrum)

$$
\begin{equation*}
L_{\mathrm{F}}=\bigoplus_{\alpha} L_{\mathrm{F}}^{\alpha} \tag{5}
\end{equation*}
$$

where the subspaces $L_{\mathrm{F}}^{\alpha}$ are irreducible with respect to the algebra $g \oplus k_{m}^{(\lambda)}(G)$ ( $g$ being the Lie algebra of $G$ ) and furthermore the label $\alpha$ determines simultaneously both an irrep $D^{\alpha}(g)$ of $g$ and an dual irrep $D^{\alpha}\left(k_{m}^{(\lambda)}(\mathrm{G})\right)$ of $k_{m}^{(\lambda)}(\mathrm{G})$. From the physical point of view the decomposition (5) gives rise to some superselection rules [11] since the single spaces $L_{\mathrm{F}}^{\alpha}$ with different $\alpha$ do not 'mix' under the time-evolution governed by a Hamiltonian $H \in \boldsymbol{k}_{m}^{(\lambda)}(\mathrm{G})$. Thus the 'internal' symmetry algebra $g$ 'induces' the 'hidden' dynamic symmetry algebra $k_{m}^{(\lambda)}(\mathrm{G})$.

This programme is simply and fruitfully realized in many-body physics for the groups $\mathrm{G}=0(n), \mathrm{U}(n)$ and $\mathrm{Sp}(n)$ since in these cases the basic invariants $I_{r}(\{\ldots\})$ are bilinear combinations of the operators $x_{i}^{\alpha}$ and $\bar{x}_{j}^{\beta}$, and therefore algebras $k_{m}^{(\lambda)}(G)$ are well known finite-dimensional Lie algebras (see e.g. [12,13]). However, for the groups $\mathrm{G}=\mathrm{SU}(n)$ and $\mathrm{SO}(n)$ the situation is more complicated. Specifically, for $n \geqslant 3$ the algebras $k_{m}^{(-1)}(\mathrm{SU}(n))$ and $k_{m}^{(-1)}(\mathrm{SO}(n))$ belong to new classes of infinite-dimensional Lie algebras [6,7] associated with some deformations (cf [14]) of generalized oscillator algebras. The main aim of the present paper is to examine the situation in more detail for the case $\mathrm{G}=\mathrm{SU}(n), D^{1}(\mathrm{G})=D\left(10_{n-2}\right), \lambda=-1$, where $\left[p_{1}, \ldots, p_{n}\right.$ ] is the highest weight of the $\operatorname{SU}(n)$ irrep $D\left(p_{1}, \ldots, p_{n-1}\right)$ and the dot as a superscript over ' $a$ ' in $\dot{a_{r}}$ means the repetition of $a r$ times.

So, specialize our further analysis for bosonic systems ( $\lambda=-1$ ). It is well known [10] that the set of the basic vector invariants $I_{r}\left(\left\{x_{i}, \hat{x}_{j}\right\}\right)$ for the group $\operatorname{SU}(n)$ consists of the following constructions:

$$
\begin{align*}
& E_{i j} \equiv\left(x_{i} \bar{x}_{j}\right)=x_{i}^{\alpha} \bar{x}_{j}^{\alpha}=\left(E_{j i}\right)^{+} \quad i, j=1, \ldots, m  \tag{6a}\\
& X_{i_{1} \ldots i_{n}} \equiv\left[x_{i_{1}} \ldots x_{i_{n}}\right]=\varepsilon^{\alpha_{1} \ldots \alpha_{n}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{n}}^{\alpha_{n}} \quad i_{1}<i_{2}<\ldots<i_{n}  \tag{6b}\\
& \bar{X}_{i_{1} \ldots i_{n}} \equiv\left[\bar{x}_{i_{1}} \ldots \bar{x}_{i_{n}}\right]=\left(X_{i_{1} \ldots i_{n}}\right)^{+} \quad \text { for } \lambda=-1 \tag{6c}
\end{align*}
$$

where $\varepsilon$ is the invariant antisymmetric tensor. The entities (6) are generators of the $C^{*}$-algebra $k_{m}(\operatorname{SU}(n)) \equiv k_{m}(n)$ of the $\mathrm{SU}(n)$-invariant conceptual observables whose elements are formal power series in the variables (6) with their certain ordering.

Specifically, from the second Hilbert theorem of the vector invariant theory [10] for $\lambda=-1$ we have the identities ('syzygies')

$$
\begin{align*}
& X_{i_{1} \ldots i_{n}} X_{j_{1} \ldots j_{n}}-X_{j_{1} i_{2} \ldots i_{n}} X_{i_{1} j_{2} \ldots j_{n}}+\ldots+(-1)^{n} X_{j_{1} i_{1} \ldots i_{n-1}} X_{i_{n} j_{2} \ldots j_{n}}=0  \tag{7a}\\
& X_{i_{1} \ldots i_{n}} E_{r}-X_{r r_{2} \ldots i_{n}} E_{i_{1} j}+\ldots+(-1)^{n} X_{r i_{1} \ldots i_{n}-1} E_{i_{n} j}=0  \tag{7b}\\
& X_{i_{1} \ldots i_{n}} \bar{X}_{j_{1} \ldots j_{n}}=P_{n}\left(\left\{E_{i j}\right\}\right) \tag{7c}
\end{align*}
$$

and those obtained by the Hermitian conjugation of equations (7). Here $P_{n}\left(\left\{E_{i j}\right\}\right)$ are polynomials of the $n$th order in variables ( $6 a$ ) whose explicit form can be found from the algebraic identity $[10] \varepsilon^{\alpha_{1} \ldots \alpha_{n}} \varepsilon_{\beta_{1} \ldots \beta_{n}}=\operatorname{det}\left\|\delta_{\beta_{j}}^{\alpha_{j}}\right\|$. The identities (7) allow us to identify the algebras $k_{m}(n)$ as PI-algebras (algebras with polynomial identities) [6] on the Grassmann manifolds with the Plucker coordinates $X_{i_{1} \ldots i_{n}}$ [16].

Further, from the CRs (2) with $\lambda=-1$ we easily find CRs for the quantities (6):

$$
\begin{align*}
& {\left[E_{i j}, E_{r s}\right] \equiv\left[E_{i j}, E_{r s}\right]_{-}=\delta_{j r} E_{i s}-\delta_{i s} E_{r j}}  \tag{8a}\\
& {\left[X_{i_{1}, \ldots i_{n}}, X_{j_{1} \ldots j_{n}}\right]=0=\left[\bar{X}_{i_{1} \ldots i_{n}}, \bar{X}_{j_{i} \ldots j_{n}}\right]}  \tag{8b}\\
& {\left[E_{r j}, X_{i_{1} \ldots i_{n}}\right]=\delta_{j i_{1}} X_{r_{2} \ldots i_{2}}+\delta_{j i_{2}} X_{i_{2}, r_{3} \ldots i_{n}}+\ldots}  \tag{8c}\\
& {\left[E_{r}, \bar{X}_{i_{1} \ldots i_{n}}\right]=-\left(\delta_{r_{i}} \bar{X}_{j i_{2} \ldots i_{n}}+\delta_{r i_{2}} \bar{X}_{i_{1} i_{3} \ldots i_{3}}+\ldots\right)}  \tag{8d}\\
& {\left[\bar{X}_{i_{1} \ldots i_{n}}, X_{j_{1} \ldots j_{n}}\right]=P_{n}^{\prime}\left(\left\{E_{i j}\right\}\right)} \tag{8e}
\end{align*}
$$

where $P_{n}^{\prime}\left(\left\{E_{i j}\right\}\right)$ are polynomials of the $(n-1)$ th order in variables $E_{i j}$ which are obtained by using the explicit form of the polynomials $P_{n}\left(\left\{E_{i j}\right\}\right)$ in equation ( $7 c$ ). Specifically, for the case $n=2$ we have
$\left[\bar{X}_{i j}, X_{k l}\right]=P_{2}^{\prime}\left(\left\{E_{i j}\right\}\right)=-2\left(\delta_{j k} \delta_{i l}-\delta_{i k} \delta_{j l}\right)-\delta_{i l} E_{k j}+\delta_{i k} E_{i j}+\delta_{i j} E_{k l}-\delta_{j k} E_{i l}$
that allow us to close the CRs (8) and to introduce the so* $(2 m)$ Lie algebra structure on the set $I_{m}(2) \equiv\left\{X_{i j}, \bar{X}_{k l}, E_{i j}\right\}[6,9]$.

It is not the case, however, for $n \geqslant 3$ because repeated CRs of $P_{n}^{\prime}\left(\left\{E_{i j}\right\}\right)$ with elements of the set $I_{m}(n) \equiv\left\{E_{i j}, X_{i_{1}, \ldots i_{n}}, \bar{X}_{i_{1} \ldots i_{n}} \mid i=1, \ldots, m\right\}$ contain elements of the $k_{m}(n)$ algebras with higher powers of $E_{i j}, X_{i_{1} \ldots i_{m}}, \bar{X}_{j_{1} \ldots j_{m}}$, and thus result in infinite-dimensional Lie algebras $k_{n}^{(-)}(n)$ [9]. But if we restrict ourselves by considering only the initial CRs (8) we obtain a new class of Lie-algebraic structures $I_{m}^{(-)}(n)$ which resemble deformations of usual Lie algebras (cf [14]). Indeed, the CRs ( $8 a$ )-(8d) are similar to those for elements of usual bosonic oscillator Lie algebras $u(m) \oplus h(m)$ [2-4], while the CR ( $8 e$ ) represents a non-standard (non-parametric) polynomial deformation of the canonical Cr. For example, in the case $n=m=3$ we have

$$
\begin{align*}
{\left[\bar{X}_{123}, X_{123}\right]=} & 6+9 N+3 N^{2}-\frac{1}{2} C_{2}(\mathrm{SU}(3)) \\
= & 3!+3 \sum_{i=1}^{3} E_{i j}+E_{11} E_{22}-E_{21} E_{12}+E_{22} E_{33}-E_{32} E_{23} \\
& +E_{33} E_{11}-E_{13} E_{31} \tag{10}
\end{align*}
$$

where $N=\frac{1}{3} \Sigma E_{i i}, C_{2}(\ldots)$ is the quadratic Casimir operator of the internal group $\mathrm{SU}(3)$.
We also note that with each algebra $I_{m}^{(-)}(n)$ one may associate a Lie algebra $k_{n}^{(*)}(n)$ if instead of the usual Lie bracket $[\because, \cdot]$ we use a new Lie bracket $[\because, \cdot]_{*} \equiv \operatorname{Pr}_{I_{m}}[\cdot$,$] where$
the symbol $\mathrm{Pr}_{I_{m}}$ stands for the projection on to $\operatorname{Span} I_{m}(n) U\{c I\}$ (with $I$ being the identity operator). In a sense the algebras $k_{n}^{(*)}(n)$ may be considered as special ('linearized') mutations [15] of the algebras $k_{n}^{(-)}(n)$ which can be used for a description of a generalized dynamics of the $\operatorname{SU}(n)$-clusters.

Thus, the set (6) generates mutually related Lie-algebraic structures $k_{n}^{(-)}(n), I_{m}^{(-)}(n)$ and $k_{n}^{(*)}(n)$ of three different types which are connected with oscillators on the Grassmann manifolds. Any of these algebras has two mutually conjugate finitedimensional parabolic Lie subalgebras $b_{+}^{(m, n)}=\operatorname{Span}\left\{E_{i j}, X_{i_{1} \ldots, i_{n}}\right\}$ and $b_{-}^{(m, n)}=$ $\operatorname{Span}\left\{E_{i j}, \bar{X}_{i_{1} \ldots i_{n}}\right\}$ of the Grassmann oscillator algebras. In addition, the algebras $k_{n}^{(-)}(n)$ have a characteristic property of nilpotency

$$
\begin{array}{lcr}
a d_{A}^{n+1} B=0 & A \in X_{-}=\operatorname{Span}\left\{X_{i . . i}^{-}\right\} & B \in X_{+}=\operatorname{Span}\left\{X_{i . . i}\right\} \\
a d_{A} B=[A, B] & a d_{A}^{n} B=a d_{A}^{n-1}\left(a d_{A} B\right) & \tag{11}
\end{array}
$$

which is useful for summing up the Baker-Campbell-Hausdorff series and developing a theory of generalized coherent states (GCs) [9].

For the physical applications we need to construct representations of the abovedefined algebras in the spaces $L_{\mathrm{F}}$. Below we outline a general scheme of the spectral analysis of the spaces $L_{\mathrm{F}}$ with respect to actions of the algebras $\operatorname{su}(n) \oplus k_{n}^{(-)}(n)$ that also determine appropriate irreps of the algebras $I_{m}^{(-)}(n)$ and $k_{n}^{(*)}(n)$. For this aim we use the concept of complementary algebras and groups [12,13].

We start from the simplest case, $n=2$, when we have $k_{n}^{(-)}(2)=k_{n}^{(*)}(2)$. As is known, the algebra $k_{n}^{(-)}(2)=\operatorname{so}^{*}(2 m)$ acts complementarily to the algebra $\mathrm{su}(2) \sim \mathrm{sp}(2)$ on the space $L_{\mathrm{F}}[9,13]$ and the decomposition (5) takes the form

$$
\begin{equation*}
L_{\mathrm{F}}=\bigoplus_{J \geqslant 0} L(J) \tag{12}
\end{equation*}
$$

where the label $J$ specifies both the $\mathrm{SU}(2)$ irrep $D(2 J)$ and the appropriate so* $2 m$ ) irrep $D^{J}$ (so* $(2 m)$ ) [9].

The subspaces $L(J)$ are spanned by the basic vectors $|J ; M ; \nu\rangle$ where the labels $M$ and $\nu$ distinguish basic vectors within irrep $D(2 J)$ and $D^{J}\left(\mathrm{so}^{*}(2 m)\right)$ respectively. The vectors $|\boldsymbol{J} ; \boldsymbol{M} ; \boldsymbol{\nu}\rangle$ are linear combinations of the Fock states (3). In the papers $[8,17]$ a simple algorithm has been developed for explicitly constructing these vectors by using the techniques of generating invariants and GCs. We consider such constructions for the case $m=2$ which, however, elucidates the situation in the general case.

For $m=n=2$ the algebra $k_{2}^{(-)}(2)=$ so $^{*}(4)$ is decomposed into the direct sum so $^{*}(4)=\operatorname{su}_{\mathrm{inv}}(2) \oplus \mathrm{su}(1,1)$ (with generators $X_{12}, \bar{X}_{12}, \frac{1}{2}\left(E_{11}+E_{22}\right)+1$ and $E_{12}, E_{21}$, $\frac{1}{2}\left(E_{11}-E_{22}\right)$ for the subalgebras $\mathrm{su}(1,1)$ and $\mathrm{su}(2)$, respectively), and the basic vectors $|J ; M ; \nu\rangle$ have the form

$$
\begin{align*}
|J ; M ; \nu\rangle & \equiv|J ; M ;\{T, t\}\rangle \\
& =N(J, M, T, t)\left(e_{1} \bar{u}\right)^{J-M}\left(e_{2} \bar{u}\right)^{J+M}\left[x_{1} u\right]^{J+t}\left[x_{2} u\right]^{J-t}\left(X_{12}\right)^{T-J}|0\rangle \tag{13}
\end{align*}
$$

where $N$ is a normalization factor, $\left(e_{i} \bar{u}\right)=e_{i}^{\alpha} \bar{u}^{\alpha}, u$ and $\bar{u}$ are some intermediate boson operators, $e_{i}=\left(\delta_{i}^{\alpha}\right)$ are the reference vectors. The vectors (13) are generated by the action of the operators $X_{12}^{S}$ on the $(2 J+1)^{2}$-dimensional 'vacuum' subspace $L_{\nu}(J)=$ $\operatorname{Span}\{|J ; M ;\{J t\}\rangle ; J=$ constant $\}$ with the characteristic property

$$
\begin{equation*}
\bar{X}_{12}|\nu\rangle=0 \quad|\nu\rangle \in L_{\nu}(J) . \tag{14}
\end{equation*}
$$

In turn the space $L_{v}(J)$ is generated by means of the lowering operators $\Sigma_{i=1}^{2} x_{i}^{2} \bar{x}_{i}^{1}=E^{21}$ and $E_{21}$ of two subalgebras $\operatorname{su}(2) \subset \operatorname{su}(2) \oplus \mathrm{so}^{*}(4)$ on the highest vector $|J ; J ;\{J J\}\rangle$.

Now we consider an action of the above algebra so*(4) on the vectors (13) using the CRs (8). We note that because of the definition of $k_{2}^{(-)}(2)=s o^{*}(4)$ its action does not change the values of numbers $J, M$ 'controlled' by the 'internal' algebra suint $(2)$. Hence each space $L(J), J \neq 0$, decomposes into the direct sum

$$
\begin{equation*}
L(J)=\bigoplus_{M} L(J, M)=\bigoplus_{M} \operatorname{Span}\{|J M ;\{T t\}\rangle: J, M=\text { constant }\} \tag{15}
\end{equation*}
$$

of the disjoint spaces $L(J, M)$ which are equivalent with respect to the action of the algebra $k_{2}^{(-)}(2)=s o^{*}(4)$. Further, an action of the subalgebra su(2) $)_{\text {inv }} \subset$ so* $(4)$ does not change the quantum number $T$ while the operators $X_{12}$ and $\bar{X}_{12}$ of the subalgebra $\mathrm{su}(1,1) \subset$ so $^{*}(4)$ raise and lower its value by one respectively. Thus each space $L(J, M)$ is a conjunction of the disjoint $\mathrm{su}_{\mathrm{inv}}(2)$-equivalent subspaces $L(J ; M ; T)=$ $\operatorname{Span}\{|J ; M ;\{T t\}\rangle: J, M, T \geqslant J=$ constant $\}$ which are 'intertwined' by the operators $X_{12}, \bar{X}_{12}$. Such an action of the algebra $k_{2}^{(-)}(2)=$ so ${ }^{*}(4)$ on the space $L(J, M)$ resembles that of usual oscillator algebra on the Fock space (cf $[2,4]$ ) and allows us to obtain the space-carrier of the so*(4) irrep $D^{J}\left(\mathrm{so}^{*}(4)\right)$ starting from any vector of the 'vacuum space' $L_{\nu}(J)$. Similarly, one can show that all spaces $L(J, M)$ are the carrier-spaces of equivalent irreps of the algebra $I_{2}^{(-)}(2)$.

The above analysis provides a sample for realizing spectral analysis of the spaces $L_{\mathrm{F}}$ in the case of arbitrary $m$ and $n$ [9]. Therefore we outline its logical scheme and point out some peculiarities in the general case.

For arbitrary $m$ and $n$ the algorithm consists of determining 'vacuum spaces' $L_{\nu}\left(p_{1} \ldots p_{n-1}\right)$ and then constructing their $\mathrm{su}(m)$-equivalent replicas ( $\mathrm{su}(m) \subset k_{n}^{(-)}(n)$, $\left.I_{m}^{(-)}(n), \quad k_{n}^{(-)}(n)\right)$ by means action of operators $X_{i_{1} \ldots i_{n}}$ on the vectors $|v\rangle \in$ $L_{\nu}\left(p_{1}, \ldots, p_{n-1}\right)$. In turn the spaces $L_{\nu}(\ldots)$ are generated by means of lowering operators of the algebras $\mathrm{su}_{\text {int }}(n)=\operatorname{Span}\left\{E^{i j} \equiv \Sigma_{r=1} x_{r}^{i} \bar{x}_{r}^{j}, i \neq j, \tilde{E}^{i i}=E^{i i}-E^{i+1, i+1}\right\}$ and $\operatorname{su}_{\text {inv }}(m)=\operatorname{Span}\left\{E_{i j}, i \neq j, \tilde{E}_{i i}=E_{i i}-E_{i+1, i+1}\right\} \subset k_{m}^{(-)}(n)$ on the common highest vectors $\left|p_{1} \ldots p_{n-1} ; \max \right\rangle \equiv\left|\left\langle p_{i}\right\rangle\right\rangle$ satisfying the following equations:

$$
\begin{align*}
& \bar{X}_{i_{1}, \ldots i_{n}}\left|\left\langle p_{i}\right\rangle\right\rangle=0  \tag{16a}\\
& \tilde{E}^{i i}\left|\left\langle p_{i}\right\rangle\right\rangle=p_{i}\left|\left\langle p_{i}\right\rangle\right\rangle=\tilde{E}_{i t} \mid\left\langle p_{i}\right\rangle \quad \quad i=1, \ldots, n-1  \tag{16b}\\
& E^{i j}\left|\left\langle p_{i}\right\rangle\right\rangle=0=E_{i j}\left|\left\langle p_{i}\right\rangle\right\rangle \quad i<j \tag{16c}
\end{align*}
$$

whose general solutions have the form [8]

$$
\begin{equation*}
\left.L\left\langle p_{i}\right\rangle\right\rangle=N \prod_{i=1}^{n-1}\left[x_{1} \ldots x_{i} e_{i+1} \ldots e_{n}\right]^{p_{i}}|0\rangle \tag{17}
\end{equation*}
$$

As a result we obtain at the final step of the algorithm the following specialization of equation (5):

$$
\begin{equation*}
L_{\mathrm{F}}=\bigoplus_{\left\langle p_{i}\right\rangle} L\left(\left\langle p_{i}\right\rangle\right)=\underset{\left\langle p_{i}\right\rangle, \mu^{\prime}, \mu^{\prime \prime}, \gamma}{\bigoplus} L\left(\langle p\rangle ; \mu^{\prime} ;\left\{\mu^{\prime \prime} ; \gamma\right\}\right) \tag{18}
\end{equation*}
$$

where

$$
L\left(\left\langle p_{1}\right\rangle ; \mu^{\prime} ;\left\{\mu^{\prime \prime} ; \gamma\right\}\right)=\operatorname{Span}\left\{\left|\left\langle p_{i}\right\rangle ; \mu^{\prime} ;\left\{\mu^{\prime \prime} ; \gamma\right\}\right\rangle\right\}
$$

are carrier-spaces of the $\mathrm{su}_{\text {int }}(n)$ irreps $D\left(\left\langle p_{i}\right\rangle\right)$ and of associated (dual to $D\left(\left\langle p_{i}\right\rangle\right)$ ) irreps of the algebras $k_{m}^{(-)}(n), I_{m}^{(-)}(n)$ and $k_{m}^{(*)}(n) ; \mu^{\prime}$ and $\mu^{\prime \prime}$ are the Gel'fand-Tsetlin patterns for the algebras $\mathrm{su}_{\mathrm{int}}(n)$ and $\mathrm{su}_{\mathrm{inv}}(m)$, respectively; $\gamma$ is an extra label for distinguishing vectors within irreps of $k_{n}^{(-)}(n)$, etc. [8]. Basic vectors $\left|\left\langle p_{i}\right\rangle ; \mu^{\prime} ;\left\{\mu^{\prime \prime} ; \gamma\right\}\right\rangle$ resemble in their appearance the structure of the vectors (13) but instead of monomials $X_{12}^{s}$ we obtain some polynomials in variables $X_{i_{1} \ldots i_{n}}$.

A natural area of applications of the above results is in developing composite models with internal $\mathrm{SU}(n)$-symmetries. Such models are governed by $\mathrm{SU}(n)$-invariant Hamiltonian $H_{\text {inv }}$ formulated in terms of elements of the algebras $k_{m}(n)$ :

$$
\begin{align*}
& H_{\mathrm{inv}}=c I+\sum_{i} \omega_{i} E_{i j}+\sum_{i, j} c_{i j} E_{i j}+\sum d_{i_{1} \ldots i_{n}} X_{i_{1} \ldots i_{n}} \\
&+\sum d_{i_{1} \ldots i_{n}}^{*} \bar{X}_{i_{1} \ldots i_{n}}+\text { higher powers. } \tag{19}
\end{align*}
$$

Specifically, some effective Hamiltonians in quantum polarization optics have this form [9].

The quantities $X_{i_{1} \ldots i_{n}}$ and $\bar{X}_{i_{1} \ldots i_{n}}$ may be interpreted as operators of creation and annihilation, respectively, of $\mathrm{SU}(n)$-invariant clusters. But, unlike usual quantum particles (bosons and fermions) these clusters have unusual statistics, as follows from the CRs (8). In particular, in the case $n=2$ we obtain from (8) trilinear CRs

$$
\begin{equation*}
\left[\bar{X}_{r s},\left[\bar{X}_{i j}, X_{k l}\right]\right]=\left(\delta_{j i} \delta_{r k}-\delta_{j k} \delta_{r l}\right) \bar{X}_{i s}+\left(\delta_{j j} \delta_{s k}-\delta_{j k} \delta_{s l}\right) \bar{X}_{r i}+\ldots \tag{20}
\end{equation*}
$$

which generalize Green's trilinear CR for para-fields and para-particles [2]. The CRs (8) also imply the general form of the number operator $N_{\mathrm{cl}}$ of such clusters [9]

$$
\begin{equation*}
N_{\mathrm{cl}}=(1 / n) \sum_{i} E_{i i}-C\left(\left\{E^{\alpha \beta}\right\}\right)=(1 / n) \sum_{i} E_{i i}-\tilde{C}\left(\left\{E_{i j}\right\}\right) \tag{21}
\end{equation*}
$$

where $C(\ldots)$ are some $\mathrm{SU}(n)$-invariant nonlinear functions of the $\mathrm{SU}(n)$ generators $E^{\alpha \beta}$ which are multiple to the identity operator $I$ on each subspace $L\left(\left\langle p_{i}\right\rangle\right)$ from (18). Specifically, for $m=n=2$ we have

$$
\begin{equation*}
C\left(\left\{E^{\alpha \beta}\right\}\right)=-\frac{1}{2}+\frac{1}{2}\left(1+2\left(E^{12} E^{21}+E^{21} E^{12}\right)+\left(E^{11}-E^{22}\right)^{2}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

Thus, also taking into account (7), we see that internal $\operatorname{SU}(n)$-symmetry yields us a scheme of a generalized paraquantization with constraints (cf [18]) on the spaces $L_{\mathrm{F}}=\bigoplus L\left(\left\langle p_{i}\right\rangle\right)$. Because of non-trivial dimensions of the 'vacuum subspaces' $L_{\nu}\left(\left\langle p_{i}\right\rangle\right)$ we can develop models with spontaneously broken and hidden symmetries within the above formalism.

Another interesting line of investigation here is in examining the possibility of constructing canonical bases of observables $Y_{a}, \bar{Y}_{b}\left(\left[\bar{Y}_{b}, Y_{a}\right]=\delta_{a b}\right)$ in terms of elements of algebras $k_{m}(n)$. This way seems to be promising since, following the general scheme [19], we obtained in [9] explicit expressions for $Y, \bar{Y}$ in the case $m=n$ :

$$
\begin{equation*}
Y=\sum_{J \geqslant 0} C_{J}\left(\left\langle p_{i}\right\rangle\right)\left(X_{12 \ldots n}\right)^{J+1}\left(\bar{X}_{12 \ldots n}\right)^{J} \quad \bar{Y}=(Y)^{+} \tag{23}
\end{equation*}
$$

where the coefficients $C_{r}$ are determined from a set of recurrence relations depending on signatures $\left\langle p_{i}\right\rangle$ of subspaces $L\left(\left\langle p_{i}\right\rangle\right)$. Specifically, on the $\mathrm{SU}(n)$-scalar subspaces $L(\langle\dot{O}\rangle)$ coefficients $C_{r}=C_{r}(\langle\dot{0}\rangle)$ satisfy the relations
$\sum C_{r} l^{(r)}(l+1)^{(r)} \ldots(l+n-1)^{(r)}=\left[(l+n)^{(n-1)}\right]^{-1 / 2} \quad l=0,1, \ldots$
$I^{(r)}=l!/(l-r)!$
From equation (24) we easily find the rational generating function for $C_{r}$ :

$$
\begin{align*}
& \sum_{r=0}^{\infty}(-t)^{r} C_{r}=\left[{ }_{0} F_{n-1}\left(\begin{array}{c}
0 \\
0
\end{array} ;-t\right)\right]^{-1}  \tag{25}\\
& \sum_{l=0}^{\infty}(-t)^{l}\left[l^{(l)}(l+1)^{(l)} \ldots(l+n-1)^{(l)}\right]^{-1}\left[(l+n-1)^{(n-1)}\right]^{-1 / 2}
\end{align*}
$$

where ${ }_{p} F_{q}(\ldots)$ is the generalized hypergeometric series [20].

Such developments can be useful in analysing composite models of many-body quantum systems of arbitrary physical nature (photons, phonons, etc). Some examples of solving certain problems in polarization quantum optics have been considered within this approach in [9].

The results obtained provide a mathematical tool for analysing composite models with internal $\mathrm{SU}(n)$-symmetry only at algebraic level. However, for examining time evolution governed by Hamiltonians (19) we need to develop group-theoretical aspects of the theory, in particular, generalized coherent states of algebras $k_{n}^{(-)}(n)$, etc. Without considering this problem in detail we note here that the 'Glauber' GCs $\exp \left(\alpha Y-\alpha^{*} \bar{Y}\right)|0\rangle$ are well determined by power series, while it is not the case for $\operatorname{GCS} \exp \left(\zeta X_{1 \ldots n}-\zeta^{*} \bar{X}_{1 \ldots n}\right)|0\rangle$ (cf [21]).

It is also of interest to extend our analysis by common consideration of both internal and the spacetime Poincaré symmetries. The 'Grassmann nature' of the $\mathrm{SU}(n)$-clusters $X_{i_{1} \ldots i_{n}}$ gives hope that we can obtain along this line certain results which are useful for developments in string theory (cf [16]) and for analysing nonlinear phenomena and coherent structures in strongly interacting many-body systems. Finally we note that formal aspects of the above analysis may be completely extended for the case $\mathrm{G}=\mathrm{SO}(\boldsymbol{n})$. Another generalization is obtained by involving considerations other than $D^{1}(\mathrm{G})$ irrep of 'internal' groups G. Specifically, in $S U(n)$-invariant field theories one must consider both fundamental and conjugate irrep (cf $[12,18]$ ).

## References

[1] Weyl H 1950 The Theory of Groups and Quantum Mechanics (New York: Dover)
[2] Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Tokyo University Press)
[3] Malkin I A and Man’ko V I 1979 Dynamics Symmetries and Coherent States of Quantum Systems (Moscow: Nauka)
[4] Perelomov A M 1987 Generalized Coherent States and Their Applications (Moscow: Nauka)
[5] Jordan P 1935 Z. Phys. 94531
[6] Karassiov V P 1989 Topological Phases in Quantum Theory (Singapore: World Scientific) p 400
[7] Karassiov V P 1988 Sov. Phys.-P.N.Lebedev Phys. Inst. Reports no 93
[8] Karassiov V P 1988 Group-theoretical Methods in Fundamental and Applied Physics (Moscow: Nauka) p 54
[9] Karassiov V P 1990 Preprint Lébedev Physics Institute (FIAN), Moscow, no 137; 1991 J. Sov. Laser Res. 12147
[10] Weyl H 1939 The Classical Groups (Princeton, NJ: Princeton University Press)
[11] Barut A O and Racka R 1977 Theory of Group Representations and Applications (Warsaw: PWN—Polish Sci. Publ.)
[12] Moshinsky M and Quesne C 1971 J. Math. Phys. 121772
[13] Alisauskas S I 1983 Sov. J. Part. Nucl. 14563
[14] Sklyanin E K 1982 Funkt. Anal. Pril. 16 27, 263
[15] Myung H C and Sagle A 1987 Hadronic J. 1035
[16] Pressley A and Segal G 1986 Loop Groups (Oxford: Clarendon)
[17] Karassiov V P 1987 J. Phys. A: Math. Gen. 205061
[18] Dirac PA M 1967 Lectures on Quantum Field Theory (New York: Yeshiva University Press)
[19] Brandt R A and Greenberg O W 1969 J. Math. Phys. 101168
[20] Bateman H and Erdelyi A 1959 Higher Transcendental Functions vol 1 (New York: McGraw-Hill)
[21] Fisher R A, Nieto M M and Sandberg V D 1984 Phys. Rev. D 291107

