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Algebras of the SU(n) invariants: structure, representations 
and applications 
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Optics Department, Lebedev Physics Institute (FIAN), 53 Lenin Avenue, 117924 Moscow, 
USSR 

Received 3 May 1991 

Abstract. A new class of Lie-algebraic stmct~res is determined within examination of 
bosonic oscillator systems with internal SU(n) symmetries. They are generated by the 
SU(n) vector invariants made up of bosonic operators and act complementarily 10 the 
SU(n) group on the Fock spaces. A full Spectral analysis of the Foek spaces is given with 
respect to both SU(n) algebras and their complementary ones. Some physical applications 
of the results to composite models of many-body systems are also pointed out. 

For many decades the symmetry approach has been widely and successfully used in 
the quantum theory of many-body systems (see e.g. [l-8]). Specifically, analysis of 
many-body problems within the second quantization method introduces in a natural 
way a symmetry formalism associated with oscillators of bosonic and fermionic types 
[1,4-61. 

Such an approach is especially fruitful in examining composite models with an 
internal symmetry since it allows us to display some hidden symmetries and other 
peculiarities of systems under consideration [6-91. 

Indeed, let us consider many-body quantum oscillator systems which are associated 

I ,  2 , .  . , , n; i = I ,  2 , .  . . , m < m, the superscript + denotes the Hermitian conjugation). 
Here the superscript a labels 'internal' components of one-particle states that transform 
in accordance with the vector (fundamental) irreducible representation (irrep) D' (G) 
of a group G: 

with the creation and 2nnihi!atinn aperators r p  2nd ay = <xp1+, YPspcc!iYc!y t,, \ -  = 

xp + u"%f ap + (U  x,) I I u * ~ I I  E D'(G) ( 1 )  = O B +  G 

where from hereon the summation is implied over repeated Greek superscripts. The 
operators xp, 3; satisfy the standard commutation relations (CR) 

where A = -1 and 1 for bosonic and fermionic systems, respectively. The Hilbert spaces 
for these systems are the Fock spaces LF spanned by the basic vectors 

N ( { n : } )  n ( x : t ) n : ' ( ~ ? ) " ~ * .  .. (x:-)n~310) (3) 
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where 10) is the vacuum vector: .C lO)  = 0, V a ,  i and N is a normalization constant. 
All physical operators including a Hamiltonian H are polynomials in variables x:, 
$, e.g. 

H = x  O J ~ ~ X ~ ? ~ + C  (c;xT+c:'X:)+higher powers (4) 
I., i 

where the asterisk * denotes the complex conjugation. 
Now we suppose that a Hamiltonian H is invariant with respect to the action (1) 

of the 'internal' symmetry group G .  Then, according to the vector invariant theory 
[IO], H depends polynomially only on some elementary G-invariants I,({x:,  $}) made 
up of G-vectors xi = (x?) and fi = (i3. Further, this G-invariance of H implies a 
possibility of picking out the G-invariant subspaces in L,  that one may interpret as 
the existence of kinematically coupled subsystems with G-invariant dynamics. In order 
to examine such composite subsystems within the general symmetry approach [3,4] 
we need to construct C*-algebras [ l l ]  of the G-invariant observables k,(G) and the 
G-invariant dynamic symmetry algebras k',*'(G) in terms of { I , ( { x : ,  $})} as well as 
study representations of these algebras in the spaces L, [9]. 

Efficient tools for solving these problems are the vector invariant theory [IO] and 
the conception of complementary groups and algebras [8,12]. Specifically, the com- 
plementarity theory allows us to decompose the space L ,  into direct sum (with a simple 
spectrum) 

L F = @ L ;  ( 5 )  
9 

where the subspaces L; are irreducible with respect to the algebra gOk',*'(G) ( g  being 
the Lie algebra of G) and furthermore the label a determines simultaneously both an 
i m p  D"(g) of g and an dual irrep D"(k',*)(G)) of k',*)(G). From the physical point 
of view the decomposition ( 5 )  gives rise to some superselection rules [ l l ]  since the 
single spaces L; with different a do not 'mix' under the time-evolution govemed by 
a Hamiltonian H E  kz)(G).  Thus the 'internal' symmetry algebra g 'induces' the 
'hidden' dynamic symmetry algebra k',*)(G). 

This programme is simply and fruitfully realized in many-body physics for the 
groups G = O( n), U(n) and Sp( n )  since in these cases the basic invariants L({. . .)) are 
bilinear combinations of the operators x: and $, and therefore algebras k',*'(G) are 
well known finite-dimensional Lie algebras (see e.g. [12, 131). However, for the groups 
G = SU( n )  and SO(n) the situation is more complicated. Specifically, for n 3 the 
algebras k',-''(SU(n)) and k',-"(SO(n)) belong to new classes of infinite-dimensional 
Lie algebras [6,7] associated with some deformations (cf [ 141) of generalized oscillator 
algebras. The main aim of the present paper is to examine the situation in more detail 
forthe case G=SU(n) ,  D'(G)=D(IO._,), A = - ] ,  where [ p  ,,..., pn] is the highest 
weight of the SU(n) irrep D(p , ,  . . . , pn-,) and the dot as a superscript over 'a' in b, 
means the repetition of a r times. 

So, specialize our further analysis for bosonic systems ( A  = -1). It is well known 
[lo] that the set of the basic vector invariants I,({&, fj}) for the group SU(n) consists 
of the following constructions: 

E(.  = (XS.) J = x;f! J = ( E . . ) +  J1 

xi ,,,, j " - [ x i ,  . . . x i  ] = &"-="X:' I, ... x% 

xi ,... :.-[xi,. . . %.I =(xi ,... d+ 

i, j = 1, . . . , m 

for A = -1  

(60) 

( 6 b )  

( 6 ~ )  

i , < i , <  . . .  < i n  
- 
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where E'" is the invariant antisymmetric tensor. The entities (6) are generators of the 
C*-algebra k,(SU(n))  3 k,,,(n) of the SU(n)-invariant conceptual observables whose 
elements are formal power series in the variables (6) with their certain ordering. 

Specifically, from the second Hilbert theorem of the vector invariant theory [lo] 
for A = -1 we have the identities ('syzygies') 

xi ,... $j,..j" - xj,~*.,.~"x~~j~...j"+. . .+(Fl)"Xj,i ,... j".,XLl...j" = 0 

Xi ,... imEr,-Xrt *... c,,Ei,j+. . .+(-1)"Xri ,... ia.,Eij=O 

x; ,... <"% ,... j" = P"(tEVH 

(7a)  

(76) 

(7c) 

and those obtained by the Hermitian conjugation of equations (7). Here P n ( ( E V } )  are 
polynomials of the nth order in variables ( 6 a )  whose explicit form can be found from 
the algebraic identity [lo] E " - ~ " E ~ , . . . ~ ~  = detil S;;.11. The identities (7) allow us to identify 
the algebras k , (n )  as PI-algebras (algebras with polynomial identities) [6] on the 
Grassmann manifolds with the Plucker coordinates Xi,,..;" [161. 

Further, from the CRS (2) with A = -1 we easily find CRS for the quantities (6): 

[E,, E,l=[Eij, E,s1L=Sj,Ej,-6i95~ 

[Xi ,... i", Xj,..Al =o = [Xi ,... i", xj r...J"l 
[E,, xi ,.,. ,.I = SjJ,i* ..A,, + ~ j c z x i , r c 3 . . . i "  + 

[E,, xi ,... ;.I = -(sn<xji,... in + ,Jt,ji >...k + . . .) 
[x<L...<", xj ,... j.1= PXtE,I) 

(86) 

( 8 c )  

( 8 d )  

(se)  

where Pb({E,} )  are polynomials of the ( n  - 1)th order in variables E, which are 
obtained by using the explicit form of the polynomials P m ( { E V ] )  in equation (7c). 
Specifically, for the case n = 2 we have 

[X,, Xki] = Pi ( {  E,}) = -2( Sj&i - Si&) - &,E, + + S~jEki - Sj&i (9) 
that allow us to close the CRS (8) and to introduce the so*(2m) Lie algebra structure 
on the set ~ ( 2 )  = {X,, xkl, Eq)  [6,9]. 

It is not the case, however, for n 2 3 because repeated CRS of Pb( {E , ) )  with elements 
of theset  l,,,(n)={E,,Xj ,,.. ;.,xi ,... J i = l ,  ..., m)containelementsofthe k,(n)alge- 
bras with higher powers of E,, Xi,...im, xjl...jm, and thus result in infinite-dimensional 
Lie algebras kL-'(n) [9]. But if we restrict ourselves by considering only the initial CRS 

(8) we obtain a new class of Lie-algebraic structures l z ' ( n )  which resemble deforma- 
tions of usual Lie algebras (cf 1141). Indeed, the CRS (8a)- (8d)  are similar to those 
for elements of usual bosonic oscillator Lie algebras u ( m ) Q  h(m) [2-41, while the CR 

( 8 e )  represents a non-standard (non-parametric) polynomial deformation of the 
canonical CR. For example, in the case n = m = 3 we have 

X,2,] = 6 + 9 N  + 3 N 2  -fC,(SU(3)) 

= 3 ! + 3  1 E,, + Eli&- E21E12+ E2,Eii - &E23 
, = I  

+Ei&,i-E,3E31 (10) 

where N = Z Er,, C2(. . .)is the quadratic Casimir operator of the internal group SU(3). 
We also note that with each algebra I L ' ( n )  one may associate a Lie algebra k:*'(n) 

if instead of the usual Lie bracket [.;I we use a new Lie bracket [.;I* = Pr,.[., 3 where 
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the symbol PI,+, stands for the projection on to Span I , , , (n)U{cI}  (with I being the 
identity operator). In a sense the algebras k‘.*’(n) may be considered as special 
(‘linearized’) mutations [15] of the algebras kL-’( n)  which can be used for a description 
of a generalized dynamics of the SU(n)-clusters. 

Thus, the set ( 6 )  generates mutually related Lie-algebraic structures k‘.-’(n), I L ’ ( n )  
and k‘.*’(n) of three different types which are connected with oscillators on the 
Grassmann manifolds. Any of these algebras has two mutually conjugate finite- 
dimensional parabolic Lie subalgebras b!”,”’ = Span{& Xi>+}  and b?”’ = 
Span{€,,, x,,...;n) of the Grassmann oscillator algebras. In addition, the algebras k‘.-’( n) 
have a characteristic property of nilpotency 

adi+‘B = 0 A E X - = S ~ ~ ~ { X ; . ; }  B E  X+ = Span{X i . . . j)  

odAB = [A, B] a d i B  = ad1-’(adAB) (11) 

which is useful for summing up the Baker-Campbell-Hausdorff series and developing 
a theory of generalized coherent states ( G C S )  [9]. 

For the physical applications we need to construct representations of the above- 
defined algebras in the spaces LF. Below we outline a general scheme of the spectral 
analysis of the spaces L, with respect to actions of the algebras su(n)O kL-’(n) that 
also determine appropriate irreps of the algebras I L ) ( n )  and k‘.*’(n). For this aim we 
use the concept of complementary algebras and groups [12,13]. 

We start from the simplest case, n = 2, when we have k‘.-)(2) = k‘.*’(2). As is known, 
the algebra k‘.-’(2) =so*(2m) acts complementarily to the algebra su(2)-sp(2) on the 
space L, [9,13] and the decomposition ( 5 )  takes the form 

LF= @ L ( J )  (12) 
J a O  

where the label J specifies both the SU(2) irrep D(2J) and the appropriate so*(2m) 
irrep DJ(so*(2m)) [9]. 

The subspaces L ( J )  are spanned by the basic vectors IJ; M; U) where the labels 
M and Y distinguish basic vectors within irrep D(2J) and D’(so*(2m)) respectively. 
The vectors IJ; M; v) are linear combinations of the Fock states (3). In the papers 
[8,17] a simple algorithm has been developed for explicitly constructing these vectors 
by using the techniques of generating invariants and GCS. We consider such construc- 
tions for the case m = 2 which, however, elucidates the situation in the general case. 

For m = n = 2 the algebra k$-’(2) = s0*(4) is decomposed into the direct sum 
so*(4)=sui.,(2)Osu(l, 1) (with generators XI,, x,,, f (E, ,+EZ2)+l  and E I 2 ,  E 2 , ,  
;(E,,  - €22) for the subalgebras su(1, 1) and su(2). respectively), and the basic vectors 
IJ; M; U) have the form 

IJ; M ;  Y)+; M ;  {T,  1 ) )  

= N ( J ,  M, T, t)(e,P)’-‘(e,P)’+M[~,~]’+‘[~2~l’-‘(X,2)r-’~O) (13) 

where N is a normalization factor, (e#) = eTP“, U and P are some intermediate boson 
operators, ei = (69) are the reference vectors. The vectors (13) are generated by the 
action of the operators X f 2  on the (2Jf  l)*-dimensional ‘vacuum’ subspace L , ( J )  = 
Span{lJ; M; {.It)); J = constant} with the characteristic property 

x,21 U) = 0 J Y ) E  L ” ( J ) .  (14) 

In turn the space L , ( J )  is generated by means of the lowering operators Sf=, xfnf = E” 
and E2, of two subalgebras su(2)c  su(2)Oso*(4) on the highest vector IJ; J; {JJ) ) .  
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Now we consider an action of the above algebra S0*(4) on the vectors (13) using 
the CRS (8). We note that because of the definition of k$-)(Z)=so*(4) its action does 
not change the values of numbers J, M 'controlled' by the 'internal' algebra sui&). 
Hence each space L(J), J # 0, decomposes into the direct sum 

L ( J ) = $  L(J,M)=$Span{lJM;{Tr}): J, M=constant) (15) 

of the disjoint spaces L(J, M )  which are equivalent with respect to the action of the 
algebra k$-)(Z) = s0*(4). Further, an action of the subalgebra SU(Z)~.,C s0*(4) does not 
change the quantum number T while the operators X,, and XI, of the subalgebra 
su(1,l)  c So'(4) raise and lower its value by one respectively. Thus each space L(J, M )  
is a conjunction of the disjoint sui,,(2)-equivalent subspaces L(J; M ;  T )  = 
SpanllJ; M ;  {Tl}): J, M, T a  J =constant} which are 'intertwined' by the operators 
XI,, XI,. Such an action of the algebra k$-'(2) = so*(4) on the space L(J, M )  resembles 
that of usual oscillator algebra on the Fock space (cf [Z, 41) and allows us to obtain 
the space-camer of the s0*(4) irrep D'(s0*(4)) starting from any vector of the 'vacuum 
space' L,(J). Similarly, one can show that all spaces L(J, M )  are the camer-spaces 
of equivalent irreps of the algebra $)(Z). 

The above analysis provides a sample for realizing spectral analysis of the spaces 
LF in the case of arbitrary m and n [9]. Therefore we outline its logical scheme and 
point out some peculiarities in the general case. 

For arbitrary m and n the algorithm consists of determining 'vacuum spaces' 
L , ( p ,  . . . pn-,) and then constructing their su(m)-equivalent replicas (su(m)c kL-'(n), 
I L ) ( n ) ,  kk-)(n)) by means action of operators Xc,...(m on the vectors I U ) E  
U p , ,  . . . , p n - , ) .  In tum the spaces L(. . .) are generated by means of lowering 
operators of the algebras su,.,(n) = Span{Ew=X,=, x:.Zi, if j, E" = E"-E'+' . '+')  and 
sui.,,(m) = SpanlE,, i # j, & = Eii - Et+l,j+,) c kk) (n)  on the common highest vectors 
IpI . . .p.-]; max)= I(pJ satisfying the following equations: 

M M 

- .. 

xc, ... J P d  =o  (16a) 

m P J  =Pil(Pi)) = ,3l(Pi)) (166) 

E"(p4 = 0 = Egl(P4 i < j  ( 1 6 ~ )  

i = l , .  . . , n - 1  

whose general solutions have the form [8] 

As a result we obtain at the final step of the algorithm the following specialization of 
equation ( 5 ) :  

where 

L((pI); I* ';  Id'; 7 ) )  = Spanll(pJ; 4; {P"; Y ) ) )  

are carrier-spaces of the sui,,(n) irreps D((pi)) and of associated (dual to D ( ( p j ) ) )  
irreps of the algebras k k ' ( n ) ,  I z ) ( n )  and k',*'(n); p' and p" are the Gel'fand-Tsetlin 
patterns for the algebras su,,,(n) and s u d m ) ,  respectively; y is an extra label for 
distinguishing vectors within irreps of ki - ' (n) ,  etc. [8]. Basic vectors I(p,); p'; (p"; y } )  
resemble in their appearance the structure of the vectors (13) but instead of monomials 
Xi, we obtain some polynomials in variables Xj, ... (". 
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A natural area of applications of the above results is in developing composite 
models with internal SU(n)-symmetries. Such models are governed bySU(n)-invariant 
Hamiltonian Hi., formulated in terms of elements of the algebras k,(n): 

H~.,=cI+~o,E,~+Ec,E,+E di ,... inxi ,,.. in 
U 

+E d:...im%j ,... ,"+higher powers. (19) 
Specifically, some effective Hamiltonians in quantum polarization optics have this 

form [9]. 
The quantities Xj,...," and xjL,,,jm may be interpreted as operators of creation and 

annihilation, respectively, of SU(n)-invariant clusters. But, unlike usual quantum 
particles (bosons and fermions) these clusters have unusual statistics, as follows from 
the CRS (E). In particular, in the case n = 2 we obtain from (8) trilinear CRS 

[ L [ ~ , , X k l I l  =~s;,s,,-6;,6,,~%,+~s;,6,,-s;,s,,~%,~+.. . (20) 
which generalize Green's trilinear CR for para-fields and para-particles [2]. The C R ~  

(E) also imply the general form of the number operator N,, of such clusters [9] 

NCI = ( l / n )  Eij - C ( {  E @ } )  = (1/ n )  1 Eii - E({E,}) (21) 

where C(. . .) are some SU(n)-invariant nonlinear functions of the SU(n) generators 
E"O which are multiple to the identity operator I on each subspace L( (pJ)  from (18). 
Specifically, for m = n = 2 we have 

C ( {  E"@])  = - f +f(  1 + 2( E'2E2' + P'E'2)  + ( E  I I  - E22)2)'/2. (22) 
Thus, also taking into account (7), we see that internal SU(n)-symmetry yields us a 
scheme of a generalized paraquantization with constraints (cf [lS]) on the spaces 
LF=$ L((p , ) ) .  Because of non-trivial dimensions of the 'vacuum subspaces' L , ( ( p i ) )  
we can develop models with spontaneously broken and hidden symmetries within the 
above formalism. 

Another interesting line of investigation here is in examining the possibility of 
constructing canonical bases of observables Y., Fb ([ Fb, Y.] = sab) in terms of elements 
of algebras k,,,(n). This way seems to be promising since, following the general scheme 
[19], we obtained in [9] explicit expressions for Y, ? in the case m = n: 

F= (Y)' (23) 

where the coefficients C, are determined from a set of recurrence relations depending 
on signatures (p,) of subspaces L ( ( p j ) ) .  Specifically, on the SU(n)-scalar subspaces 
L ( ( 0 ) )  coefficients C, = C,((O)) satisfy the relations 

Jt, - 
y =  E CA(PJ)W12...") (XI2 ... "1' 

la0 

1 C , P ( I +  I)"' .  . . ( I + n  - I)( ' )= [ ( /+n) '" -"] - ' / '  / = 0, 1 ,  . . . 
(24) 

I"'= ] ! / ( I -  r ) !  

From equation (24) we easily find the rational generating function for C,: 
m 

,=O 1 (-O,C,= [ oF"-8(,2,:,,"; - 9 - l  

m 

E ( -O~[ / ("(I+l )"~.  . . (/+?I- 1 ) ( ' ) ] - 1 [ ( I + f l - l ) '  "-'11-"2 
I =0  

(251 

where pFq(.  . .) is the generalized hypergeometric series [ZO]. 
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Such developments can be useful in analysing composite models of many-body 
quantum systems of arbitrary physical nature (photons, phonons, etc). Some examples 
of solving certain problems in polarization quantum optics have been considered within 
this approach in [Y]. 

The results obtained provide a mathematical tool for analysing composite models 
with internal SU(n)-symmetry only at algebraic level. However, for examining time 
evolution governed by Hamiltonians (19) we need to develop group-theoretical aspects 
of the theory, in particular, generalized coherent states of algebras k i - ) ( n ) ,  etc. 
Without considering this problem in detail we note here that the 'Glauber' GCS 

exp(aY-a*F)IO) are well determined by power series, while it is not the case for 

It is also of interest to extend our analysis by common consideration of both internal 
and the spacetime Poincari symmetries. The 'Grassmann nature' of the SU(n)-clusters 
Xil...tn gives hope that we can obtain along this line certain results which are useful 
for developments in string theory (cf [16]) and for analysing nonlinear phenomena 
and coherent structures in strongly interacting many-body systems. Finally we note 
that formal aspects of the above analysis may be completely extended for the case 
G = SO( n). Another generalization is obtained by involving considerations other than 
D' ( G )  irrep of 'internal' groups G. Specifically, in SU(n)-invariant field theories one 
must consider both fundamental and conjugate irrep (cf [12, IS]). 

GCS e x p ( ~ X l . . . . - ~ * ~ l . . . . ) l O )  (cf [211). 
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